Peer Effects in Consideration and Preferences®

Nail Kashaev Natalia Lazzati Ruli Xiaof

This version: January 12, 2026
First version: April 13, 2019, arXiv:1904.06742

Abstract We develop a general model of discrete choice that incorporates peer
effects in preferences and consideration sets. We characterize the equilibrium behavior
and establish conditions under which all parts of the model can be recovered from
a sequence of choices. We allow peers to affect preferences, consideration, or both.
We show that these peer-effect mechanisms have different behavioral implications in
the data. This allows us to recover the set and the type of connections between the
agents in the network. We then use this information to recover each agent’s preferences
and consideration mechanisms. These nonparametric identification results allow for
general forms of heterogeneity across agents and do not rely on the variation of either
exogenous covariates or the set of available options (menus). We apply our results to
model expansion decisions by tea chains and find evidence of limited consideration. We
simulate counterfactual predictions and show how limited consideration slows market

penetration and competition.
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1. Introduction

Agents are known to be influenced by others when making decisions (Durlauf and Young,
2001). This social influence has been shown to be important for people in areas such as
health and education and for the decisions of firms such as opening a new store. It has
also been argued that agents can influence each other in different ways (Manski, 2000). A
comprehensive social influence approach is needed to understand the mechanisms by which
the interactions operate in practice and inform private and public policies. We offer a model
of social influence where the choices of connected agents or peers shape the subset of options
that the agent ends up considering’ and her preferences over the alternatives. We show that
these two mechanisms have different behavioral implications in the data and that variation
over time in the choices made by connected agents allows us to recover all parts of the model.
We illustrate our ideas with an empirical application of expansion decisions of the two largest
tea chains in the high-end tea industry in China.

In our model, a fixed group of agents are linked through a given network. A linked agent
or peer can affect the options an agent considers, how she ranks the alternatives, or both.?
More precisely, at a randomly given time, an agent gets the opportunity to select a new
option from a finite set of alternatives. As in standard consideration set models, the agent
does not pay attention to all the available options. Instead, she first forms a consideration set
and then picks an option from it. The distinctive feature of our model is that the probability
that a given alternative enters the consideration set depends on the number of peers currently

adopting that option.> We also allow the choices made by her peers to affect the preferences

!This possibility has been (explicitly or implicitly) discussed by other researchers in specific contexts
—e.g., the choices made by friends may help us discover a new television show (Godes and Mayzlin, 2004), a
new welfare program (Caeyers, 2014), a new retirement plan (Duflo and Saez, 2003), a new restaurant (Qiu
et al., 2018), or an opportunity to protest (Enikolopov et al., 2020).

2Throughout the paper, we use a behavioral definition of peers: for a given agent, her peers are defined
as all other agents that directly impact the choices that the agent makes.

3As in most of the literature, we assume that consideration sets are (ex-ante) random. While there
are alternative interpretations, one could motivate random preferences by saying that when subjects make
a decision, they maximize a well-defined utility function (or preference), but this changes stochastically
over time. We interpret random consideration in our model in a similar way. Our set-up allows current
consideration to depend on current choices, but does not allow the dependence of current consideration on
the previously considered (but not picked) alternatives —Remark 3 discusses this important limitation of
the model.



of the agent over alternatives.
Our model might fit in a large number of applications. In the domain of consumer
behavior, we can think of an online platform that offers video games to a set of players

(agents).?

The number of games offered by the platforms is often quite large, so agents
might not be able to pay attention to all of them when making a decision. Platforms often
allow agents to form social networks and make the last purchased or played game by peers
visible to the agent. This might shrink the subset of games she ends up considering. Some
of these games are played in groups, so the choices made by her peers can directly affect the
utility the agent gets from playing a particular game. If we observe choices made by the
players over time, our model can help the platform personalize each agent’s reference groups
to maximize profits. While well-suited for many applications, our model requires repeated
choices by agents in the network. Thus, this framework does not directly fit, for instance, a
situation where alternatives involve durable goods such as different brands of vehicles.

After showing equilibrium existence, we consider a long sequence of choices made by the
network members from an invariant, latent network structure and time-stable preferences
and consideration set formation mechanisms. We show that all primitives of the model
can be uniquely recovered: the network structure, the consideration probabilities, and the
distribution of choices given a consideration set (which we associate with preferences). Three
aspects of our nonparametric identification results deserve special attention. First, we allow
for very general forms of heterogeneity across agents. Second, we identify not only who
influences whom, but also whether a peer affects consideration, preferences, or both. Third,
we do not rely on changes in exogenous covariates or the set of available options (menus)
to identify the model. Instead, we use variation in the choices made by peers. One can
think of them as excluded covariates that affect different parts of the decision process.’
These excluded covariates are special as they vary endogenously in the model and we need
to identify them in the data.

In our model, the observed choices are generated by a system of conditional choice

probabilities (CCPs): each CCP specifies the frequency of choices made by a given agent

4Lee (2015) finds that the likelihood of a player adopting a particular game increases as more of her
online friends have previously adopted it.
®We thank Francesca Molinari for pointing this out.



conditional on the choice configuration (i.e., choices of everyone in the network) at the
moment of revising her selection. The identification strategy has two parts. First, we identify
the primitives of the model from the CCPs. Second, we recover the CCPs from the data.

To identify the model from the CCPs, we proceed in steps. First, we observe that
changes in an agent’s peers’ choices lead to changes in her own CCPs. This helps us identify
who the peers are, but not whether their influence comes from affecting consideration or
preferences. We separate the two mechanisms using the following feature: for a given agent,
the probability of selecting an alternative can be written as the probability of considering the
alternative times the probability of selecting it conditional on it being considered. These two
terms capture the peer effect channels by the consideration and the preference, respectively.
While the first probability changes when a consideration peer switches to that alternative,
the second probability remains constant since the agent is already considering the alternative.
Also, while the second probability varies when a preference peer chooses something different
from the alternative, the first probability is not affected by this change. In other words, an
interdependence between alternatives is present in preferences, but not in consideration. We
use these observations to separate the two mechanisms via a cross order effect of peers in
alternatives in the CCPs.

When the network structure is recovered, choices made by different types of peers can be
used as double exclusion restrictions to identify consideration mechanisms and preferences.
For example, variation in choices made by peers that only affect consideration (consideration-
only peers) can be used to identify changes in consideration probabilities. To recover
preferences, we first show that variation in choices made by consideration-only peers can be
used to mimic variation in menus. Thus, one can identify the CCPs for the cases in which a
subset of alternatives has been completely removed from the menu. This artificial variation
in menus generated by consideration-only peers can then be used to identify preferences.

To identify the CCPs, we assume the researcher observes a sequence of choices for the
network members in a long time-series with a time-stable structure. We consider two datasets:
In continuous-time datasets, the researcher observes agents’ choices in real time, so one can
identify the CCPs directly. Our empirical application is an example of this type of “ideal”

dataset. In discrete-time datasets, the researcher observes the joint choices at fixed time



intervals (e.g., every Monday). In this case, we use Blevins (2017, 2026) to show that the
CCPs are also uniquely identified under a mild condition.

We offer empirically relevant extensions: we study finite history dependence; we explain
what to do when one of the choices (e.g., “do nothing”) is not observed in the data.

To showcase our methodology, we study the possibility of limited attention in the
expansion decisions of China’s top two high-end tea chains, Nayuki and Heytea. The set
of markets in which these firms can open a new store is very large, and we observe their
choices near the time when they started their business. As newcomers, they could lack
knowledge about current and future market conditions (e.g., the level of consumer demand
and local government regulations) or the potential actions of competitors, and thus, not be
able to form expectations about market profitability. We think that managers may have
employed simple rules (heuristics) to first narrow down the markets they considered, and
then used their limited resources to evaluate those options more carefully. This idea builds
on previous theories of bounded rationality in firms offered by Simon (1955).° We add
neighborhood effects to these heuristics by assuming that, for a given market, the number
of firm stores in the nearby markets affects the probability of considering that market, but
not its profitability. This exclusion restriction allows us to identify the network structure

—mneighboring markets that affect consideration only (i.e. consideration-only peers)— and to
recover profits and consideration mechanisms. Our results show that firms in our application
limit their consideration, that ignoring this behavior can mislead the analysis of market
profitability, and that limited consideration may play a key role in shaping market structure.

Finally, we relate our results with the existing literature. From a modeling perspective,
our setup combines the dynamic model of social interactions of Blume (1993, 1995) with
the (single-agent) model of random consideration sets of Manski (1977) and Manzini and
Mariotti (2014). By adding peer effects in consideration sets, we use variation in the choices
made by the peers of a given agent as the main tool to recover her random preferences. The
literature on the identification of single-agent consideration set models has mainly relied

on the variation of the set of available options (menus), e.g., Aguiar (2017), Aguiar et al.

6See also the discussion of boundedly rational firm behavior in Simon (1945), Armstrong and Huck (2010),
and Heidhues and Kdszegi (2018).



(2016), Brady and Rehbeck (2016), Caplin et al. (2019), Cattaneo et al. (2020), Horan (2019),
Kashaev @) Aguiar (2022), Lleras et al. (2017), Manzini and Mariotti (2014), and Masatlioglu
et al. (2012); or offered partial identification results, e.g., Barseghyan et al. (2021a). (See
Aguiar et al., 2023, for a comparison of several consideration set models in an experiment.)
Other papers have relied on covariates that shift preferences or consideration sets, e.g.,
Barseghyan et al. (2021b), Crawford et al. (2021), Conlon and Mortimer (2013), Draganska
and Klapper (2011), Gaynor et al. (2016), Goeree (2008), Mehta et al. (2003), Lu (2022), and
Roberts and Lattin (1991). Abaluck and Adams-Prassl (2021) show that choice probabilities
in full consideration models satisfy a symmetry property analogous to Slutsky symmetry
in continuous-choice models that breaks down in consideration set models when changes in
characteristics perturb consideration. They use unbounded alternative-specific covariates to
generate exogenous menu variation to identify the consideration probabilities. Aguiar and
Kashaev (2024), Allen and Rehbeck (2024), Crawford et al. (2021), and Dardanoni et al.
(2020) use repeated choices (i.e., panel data) but do not allow for peer effects.

There is a vast econometric literature on the identification of models of social interactions
in which friends’ choices affect the preferences but not the consideration set of a given
person (see, for example, Blume et al., 2011, Bramoullé et al., 2020, De Paula, 2017 and
Graham, 2015, for comprehensive reviews of this literature). We add to this literature a
second mechanism of peer effects that might be important in specific applications.

As we mentioned earlier, we can recover from the data the set of connections between the
agents in the network. In the context of linear models, a few recent papers have made progress
in the same direction. Among them, Blume et al. (2015), Bonaldi et al. (2015), De Paula
et al. (2025), Lewbel et al. (2023), and Manresa (2013). In the context of discrete choice,
Chambers et al. (2023) also identify the network structure. However, in this paper, peers do
not affect consideration sets but directly change preferences (among other differences).

Two theoretical papers incorporate peer effects in the consideration sets: Borah and Kops
(2018) do so in a static framework and use menu variation for identification. Lazzati (2020)
considers a dynamic model but focuses on two alternatives that can be acquired together.

In relation to the application, a large empirical literature addresses how firms make entry

and expansion decisions in oligopolies. Part of this literature studies strategic interactions in



payoffs in static entry games (e.g., Bresnahan and Reiss, 1990, Berry, 1992, and Ciliberto
and Tamer, 2009). These studies typically use cross-sectional data and address the challenge
of multiple equilibria across markets. Another branch, more closely related to our work,
models expansion decisions as the result of dynamic games (e.g., Aguirregabiria and Mira,
2007, Bajari et al., 2007, Arcidiacono et al., 2016, and Blevins et al., 2018). These papers
use panel data, often assume a single equilibrium in the data-generating process, and add
forward-looking behavior. By capturing the trade-off between the upfront cost and the
potential benefits in the future, they show the incentives of firms to preempt their opponents
by entering the market early. We study a third possible channel of interdependencies in
firms’ entry decisions via bounded rationality in managerial decision-making and introduce
interaction effects in both payoffs and consideration sets. By modeling sequential revisions
in a continuous-time setting, the underlying mechanisms and factors that produce the
observed data in our set-up lead to only one equilibrium. Although we abstract away from
firms’ forward-looking behavior, we allow the history of rivals” actions to affect the firm’s
payoffs.” One could view marginal profit in our framework as the reduced-form value from
expansion, which embeds forward-looking behaviors without explicitly modeling them. We
leave for future research the modeling of limited consideration, multiplicity of equilibria, and
forward-looking behavior altogether —this new model will require a different interpretation.

The rest of the paper is organized as follows. Section 2 presents the model, the main
assumptions, and establishes equilibrium existence. Section 3 studies identification. Section 4
offers some extensions. Section 5 applies our model to expansion decisions by firms in the tea
market, and Section 6 concludes. The Online Appendix contains the regularity conditions

for identification, all the formal proofs, and extra results for identification and estimation.

7As we mentioned earlier, our application studies the expansion decisions of Nayuki and Heytea when they
were relatively new in the market and of moderate size. Thus, a less-sophisticated model might explain their
behavior well. We understand that a fully rational, forward-looking approach would be more appropriate to
study well-established large-scale companies.



2. The Model

This section describes the model and the main assumptions in the paper. It also establishes

the existence and uniqueness of equilibrium.

2.1. Network, Consideration Sets, and Preferences

Network and Choice Configuration There is a finite set of agents A = {1,2,..., A},
A > 2, and a finite set (menu) of alternatives ) = {0,1,2,...,Y}, Y > 1, from which
the agents might choose. Alternative 0 is called the default alternative. We refer to
Y = (Ya)yeu € Y* as a choice configuration.”

Agents are connected through a fixed given network and interact with others in different
ways. Specifically, the choices made by the peers of a given agent can affect the set of
alternatives the agent ends up considering, her preferences over the alternatives, or both.
Thus, the network comprises two sets of edges in A, I' = (', 'g), where I'c and 'y are the
sets of consideration and preference edges, respectively. Each edge identifies two connected
agents and the direction of the connection. Hence, the reference group of Agent a consists of

reference groups for consideration, N'C,, and for preferences, N'R,. Formally, for each a € A
NC,={d € A:Jedge from a to a’ in ¢} , NR, = {d € A: 3 edge from a to a’ in T'p}.

The full reference group is N, = NC, UNR,. We follow the convention and assume that
a & N,. Since we allow for the possibility that some peers affect both consideration and
preferences, NCR, = NC, NNR, can be nonempty.

We will use a simple example throughout the paper to illustrate the main concepts,

assumptions, and identification results.

Example 1. There are four agents and three alternatives. That is, A = {1,2,3,4} and

8The model easily extends to settings where menus are agent-specific if, for every pair of agents, there is
a one-to-one mapping between their choice sets.



Y ={0,1,2}. The reference groups for consideration are:
NC ={2,3}, NCy={1}, NCs={2}, NC,=0.

This means that, for instance, Agents 2 and 3 affect the set of alternatives that Agent 1 ends

up considering. We assume that only Agents 1 and 3 affect each other preferences:
NRy={3}, NRy=0, NR;={1}, NRy=0.

Agent 4 has no peers and Agent 3 affects both preferences and consideration of Agent 1. [

Choice Revision Process We model the revision process as a standard continuous-time
Markov process on the space of choice configurations. We assume agents are endowed
with independent Poisson “alarm clocks” with rates (A,),c 4. At randomly given moments
(exponentially distributed with mean 1/),) the alarm of Agent a goes off.” When this
happens, the agent forms a consideration set and then selects an alternative from it. Since
the probability of any two alarm clocks going off simultaneously is zero, the probability that
two agents make choices simultaneously is also zero. This fact simplifies identification and

rules out multiple equilibria in the data-generating process.

Peer Effects in Consideration Sets The probability that Agent a pays attention to
and, thereby, includes a particular alternative in her consideration set depends on the
choice configuration at the moment of revising decisions. We indicate by Q, (v | y, NC,) the
ex-ante probability that Agent a considers alternative v given a choice configuration y and
her consideration reference group NC,. We assume that each alternative is added to the

consideration set independently from other alternatives.

Assumption 1 (Independent Consideration). For each a € A and y € Y4, the probability

of facing consideration set C, which is a subset of menu Y, is

Ca(C 1y NCo, V) =TI, Qu @y NC) T, )0 (1= Qa (v [y, NCa)).

9That is, each Agent a is endowed with a collection of random variables {74}, such that 72 — 7%_; is
exponentially distributed with mean 1/),. These differences are independent across agents and time. All
the identification results in Section 3.1 are still valid if agents have perfectly synchronized clocks.




Since the consideration set cannot be empty, we assume that the default alternative is
always considered. That is, Q, (0 | y,NC,) =1 for all a € A and y € Y*. This restriction
is the only one imposed on the default alternative, and it is satisfied in many applications
(including the one we present in Section 5). We include ) as a determinant of C, to simplify

the notation when we later identify counterfactual choice distributions for different menus.

Example 1 (continued). Recall that the consideration peers of Agent 1 are NC; = {2,3}.

Thus, the probability that Agent 1 considers at the moment of choosing, say, set {0,1} is

Ci({0,1} 1y,{2,3},{0,1,2}) = Q, (1 |y, {2,3}) [1 — Q, (2| v, {2,3})].

Assume that the attention to option v given by Agent 1 is modeled as follows: v is considered
if and only if ¢1, (y,{2,3}) > €1, where ¢1,,(y, NC1) measures the mean attention of Agent 1
to v as a function of her consideration peers and ¢, , is a random attention shock independent
of y. Then, the probability of considering v is Q, (v |y,{2,3}) = F.,, (co1 (yv,{2,3})),

where F.,  is the cumulative distribution function (c.d.f.) of 1. O

Peer Effects in Preferences After the consideration set is formed, the agent selects
an alternative according to some choice rule. The choices made by the agent from any
consideration set may be random from the researcher’s perspective if there are latent
preference shocks across choice instances, as in the example below. Choice rules summarize
the decision process after the consideration set is formed. Since, in practice, the underlying
preferences (utility function parameters) can be identified and estimated from the choice
rule, we focus on the choice rule and leave its association with preferences to be flexible.

We incorporate the peer effect in preferences by allowing the choice rule of agents to
depend on the configuration of choices and her preference peers. Formally, given consideration
set C, the choice rule R, (- | y, N'R,,C) is a discrete probability distribution supported on C.
That is, Ry (v | y,NR,,C) > 0 for all v, and 3¢ Ra (v | y, N R,,C) = 1.

Example 1 (continued). Recall the preference peer of Agent 1 is NR; = {3}. Hence,
her probability of selecting alternative 1 in consideration set {0,1} is Ry (1 | y,{3},{0,1}).

Assume the utility Agent 1 gets from v in set C is given by u1,¢ (y, NR1) + &10c, where

10



Ui captures the mean utility from the alternative in the given consideration set. The
vector of agent- and consideration-set-specific taste shocks &, ¢ = (&,.0.¢)vec is continuously

distributed'” with the conditional c¢.d.f. F,¢(- | y,N'R,,C). Then, for v € C,

Ry (v]y,{3},C) = /11 (U = ar%lreréax{umgc (yv,{3}) + 51,v',c}> dFye(&e |y, {3}.0),

where 1 ( -) is the indicator function. If the &, , ¢s are independent and identically distributed
(i.i.d.) shocks, distributed according to the standard Type I extreme value distribution, then

the above expressions simplify to

exp (U1,v,c (y7 {3}))

. O]
S wec exp (U1 e (v, {3}))

Ri(v]y {3}.€) =

Note that in the above example, consideration sets and choices of preference peers can
directly affect mean utilities and the distribution of the latent taste shocks. Since the
choices of consideration-only peers cannot affect the distribution of utilities conditional on
consideration sets, in contrast to Barseghyan et al. (2021a) and Lu (2022), our model imposes
some restrictions on the dependence between random preferences and consideration.'!

We extend the model in Section 4.1 to allow the dependence of Q, and R, on the current
or past choices made by Agent a (e.g., a Markov process with memory). This allows the
possibility that an agent considers for sure (i.e., with probability 1) her current option in
the next revision. We write the model in a stricter way here only to simplify the exposition.

By combining preferences and consideration sets, the conditional choice (ex-ante) proba-

bility (CCP) that Agent a selects (at the time of choosing) alternative v given y is

Po(0]¥) = Yuey Ra (0 | ¥ NRwC T e Qu (0 |y NC) [Ty (1 Qu (0 | 3. NCL))

We aim to identify N'R,, NC,, Rq, and Q, from a sequence of choices over time.

Remark 1. Our identification arguments only use variation in the choices made by connected

agents. That is, we do not use exogenous variation in observable characteristics or menus.

10Continuity is only needed to handle cases where two alternatives give the same utility.
" Aguiar and Kashaev (2024) allow for a similar form of dependence of mean utilities on consideration.

11



Thus, to simplify the exposition, we do not include observable covariates in the model. We
can interpret our setting as if we were conditioning on them. We show in our application that
covariates can be easily incorporated into the model for estimation purposes and could also
offer extra sources of identification. In particular, alternative-specific covariates can serve
as further exclusion restrictions for the consideration or preferences —e.g., product-specific

advertisement might only affect attention to a specific product (Goeree, 2008).

Remark 2. The dynamic interaction process we model assumes that each agent best responds
to the observed choices made by others and does not anticipate their actions in the future or
how her choice could affect them. Allowing for these possibilities would require a different
interpretation of our model. For instance, an agent could select an option so that others
incorporate the alternative in their consideration sets. We believe this set up could lead to a

new model of endogenous social norms or rules within a group of people.

Remark 3. Our framework does not allow the dependence of current consideration on the
previously considered (but not picked) alternatives. Allowing this invalidates our exclusion
restrictions. Specifically, the introduction of the dependence of the consideration on past
consideration leads to a hidden state Markov process, where the hidden state is the past
consideration set. Since the past consideration sets and the past choices are correlated, and
the past choices depend on preference peers, we obtain that the past consideration sets are
correlated with choices made by preference peers. As a result, the choices made by all peers

affect consideration. We leave this important and hard problem for future research.

2.2. Main Assumptions

Our results for equilibrium existence and identification build on four main assumptions. We
have already discussed Assumption 1. We introduce next the other three main restrictions.
Let NC7 (y) and NR, (y) be the number of agents in the consideration and preference groups

of Agent a who select option v in choice configuration y, respectively. Formally,

NC! (y) = [{a' € NC, : yo = v}| and NR. (y) = [{d' e NR, : yo = v}],

12



where | A| is the cardinality of A. Let NRS (y) = (NRY (¥))yes\ oy 2nd NC? (y) = (NC? (¥))ves\jo}

for any & C ). The second assumption is as follows.
Assumption 2 (Consideration). For each a € A, y € Y4, and v # 0, we have that
(i) Qq (v ]y, NCs) > 0;

(i) Q, (v |y, NCa) = Q, (v |NC; (y)); and
(iii) Under Assumption 2(ii), Q, (v | 1) /Q, (v | 0) differs from 1 and Q, (v | 2) / Q, (v ] 1).

Assumption 2(i) states that the probability of considering each option is strictly positive
regardless of how many peers have selected it. This assumption captures the idea that agents
can eventually pay attention to an alternative for various reasons that are outside the control
of our model (e.g., watching an ad on television or receiving a coupon). We allow alternatives
to be considered with probability 1,'? capturing a form of persistence in consideration
sets. We allow even richer forms of evolution of consideration sets by introducing history
dependence to the model in Section 4.1. Assumption 2(ii) says that the probability of
considering a specific option depends on the number but not the identity of the consideration
peers that currently selected it. Assumption 2(iii) is a variability requirement stating that
the choices made by consideration peers have an effect on consideration probabilities. It rules
out constant or exponential probability functions of the number of peers (i.e., InQ,(v | -) is
nonlinear) around the origin. This restriction could be imposed at any other point in the
support. This assumption allows for different levels of satiation. For example, consideration
may change only when the number of peers picking the option achieves a given threshold
(e.g., 10 agents, 20 agents, etc.). Assumption 2(iii) is not fully needed for all our results. For
instance, nonexponential probabilities are needed to identify N'C,, but N, and N'R, only

require consideration probabilities to vary with the choices made by the peers of Agent a.

Example 1 (continued). Suppose that the mean attention of Agent 1 towards alternative
U, €14, 18 such that ¢ ,(y,{2,3}) = NCJ(y) with NC{(y) = 1(y2=v) + 1 (ys =v).
Thus, Q;(v|NCy (y)) =F.,, (1(y.=v)+1(ys =wv)). Assumption 2 holds if, for instance,

12Note that, due to its multiplicative structure, the ex-ante probability of facing a given consideration set
is between 0 and 1 and adds up to 1 when we sum across all consideration sets.

13



the probability of considering an option increases with the number of consideration peers
that select that alternative at a decreasing rate, e.g., F., (0) = 1/8, F. (1) = 1/2, and
F., . (2) = 3/4. It also holds if the rate of change is initially increasing, as in the well-known
S-shaped curve for network effects, where a phase of increasing returns is then followed by

diminishing returns. It only rules out a constant rate of change at some point. 0J

Let 0! denote a vector obtained by replacing the v-th component of the zero vector 0 by

1. The third assumption restricts the preference part of the decision process.
Assumption 3 (Preferences). For each a € A,y € Y4, C C Y, and v € C\ {0},
(i) Re (v |y, N R4, C*) > 0 for some C* such that C,(C*|y,NC4,Y) > 0;
(i)) Ra (v ]y, N'R4,C) = Ry (v | NRE (y),C); and
(iii) Rq (v ] 0L,C) — R4 (v | 0,C) # 0, and its sign does not depend on C.

Assumption 3(i) requires each alternative to be picked with a positive probability at least
in one consideration set that can be realized. Together with Assumption 2(i), it implies
that every alternative can be picked with a positive probability. This assumption allows
for both random and deterministic choice rules. Assumption 3(ii) states that the choice
rule depends on the number (but not the identity) of preference peers that selected each of
the alternatives in the consideration set. Assumption 3(iii) assumes that the change in the
probability of selecting a given alternative due to an additional preference peer selecting this
alternative is either positive or negative for all consideration sets that contain the alternative.
The effect is required to be strict only around the origin, that is, when all other peers select
the default. It rules out that the different changes induced by a preference peer changing her
option cancel out. Though this condition can be relaxed, as written, it is easy to interpret
and is weaker than assuming either positive or negative peer effects in preferences —as in
many existing models. As in Assumption 2(iii), the direction of the peer effect in preferences

does not need to be known and can be different for different agents and alternatives.

Example 1 (continued). Suppose that the mean utility of Agent 1 from alternative v given

consideration set C is uy ¢ (¥, {3}) = w1 c (NR] (y)) with NRY (y) = 1 (ys =v). Thus,
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given that only Agent 3 affects the preferences of Agent 1, the choice rule is expressed as

exp (Urpe (1 (ys =v)))
Zwee exp (e (L(ys = "))

Ri (v | NR (y).C) =

Assumption 3 holds if @ ,¢(1) > Uy,,¢(0) or Uy c(1) < Uy, ¢(0) for all C. This requires peer

effects in preferences to be either positive or negative for each v and all C. O
The fourth assumption imposes some restrictions on the network of each person.
Assumption 4 (Network). For each a, if  INCR,| > 1 then [NC, \ N R,|+IN R, \ NC,| > 1.

Assumption 4 is an exclusion restriction. It states that if the agent has a peer that affects
both consideration and preferences, then the agent also has at least another peer that
affects either only consideration or only preferences. The choice made by such a peer
provides an exclusion restriction. Without Assumption 4 the scenario where NC, = N'R,
is observationally equivalent to the one in which NC, = ). Note that we do not need the
two sets of agents to be nonempty. If only one of the peer-effect mechanisms operates in
practice, our results will allow us to state whether the interdependencies in choices are due

to peer effects in preferences or in consideration.

Example 1 (continued). Agent 1 is the only agent for whom |[NCR4| =1 > 1. But we also
have that |[NC; \ NRy| + |INRy \NCi| =1 > 1. Thus, Assumption 4 is satisfied. O

2.3. Equilibrium Behavior

In this subsection, we define a notion of equilibrium in the network system, i.e., the invariant
distribution in the Markov process, and establish its existence and uniqueness.

The i.i.d. Poisson alarm clocks, which determine the revision process, guarantee that
each time, at most, one agent revises her selection almost surely. Thus, the transition
rates between choice configurations that differ in more than one agent changing the current
selection are zero. This facilitates identification as there are fewer terms to recover (Blevins,

2017, 2026). It also rules out some mechanisms for multiple equilibria in the data-generating
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process. Formally, the transition rate from choice configuration y to any different one y’ is

0 if ZaGA]l (y:z 7é ya) >1
YacaNaPa (Yo | Y) L (Yo # va) i Facal (Yo # va) =1

w(y' |y)=

In the statistical literature on continuous-time Markov processes, these transition rates are
the off-diagonal terms of the transition rate matriz (also known as the infinitesimal generator
matriz). The diagonal terms are simply given by w (y [ y) = — Xyeyay 3 W (y' | ¥)-

We indicate by W the transition rate matrix. In our model, the number of possible
choice configurations is (Y +1)*. Thus, W is a (Y +1)* x (Y +1)" matrix. To avoid
ambiguity in the exposition, we let the choice configurations be ordered according to the
lexicographic order. Formally, let ¢ (y) € {1, 2., (Y + I)A} be the position of y according
to the lexicographic order. Then, W,y).y) = W (¥ | ¥)-

The system in equilibrium is characterized by an invariant distribution p: Y4 — (0, 1),
with 3 cya it (y) = 1, of the dynamic process with transition rate matrix Y. This equilibrium
behavior relates to the transition rate matrix in a linear fashion )V = 0.

The next proposition shows equilibrium existence. It also states that the same conditions
guarantee the equilibrium is unique and has full support on the choice configurations. The

full support feature is important for us as we rely on choice variation to recover the model.

Proposition 2.1. If Assumptions 1, 2(i), and 3(i) hold, then there exists a unique equilibrium
w with full support.

3. Empirical Content of the Model

This section offers restrictions under which the researcher can uniquely recover the set of
connections, NC, and N'R,, the consideration mechanism, Q,, the choice rule, R,, and the
Poisson alarm clock, \,, for every Agent a. We separate the identification analysis in two
parts. We first show how to recover the set of connections, choice rules, and consideration

probabilities from the CCPs, P = (P,),. 4. We then show how to recover P.

16



Remark 4. In Online Appendix B, we run simulations from our motivating example to show
that we can estimate CCPs and parts of the model nonparametrically using our identification
ideas step-by-step. We also show that estimation becomes harder with more agents and/or

alternatives. In the application, we use a parametric estimator to circumvent these difficulties.

3.1. Identification of the Model From P

The identification strategy we offer builds on a sequence of steps. We initially recover the
network structure in three stages: First, we recover the reference group of every agent.
Second, we identify whether a given peer affects consideration only or preferences. Lastly,
we show how to distinguish between a peer that affects preferences only (preference-only
peer) and a peer that affects consideration and preferences (consideration-preference peer).
We finally use this information to recover consideration probabilities and choice rules.
Along the analysis we assume a mild “regularity condition.” We briefly discuss the role

of this condition below and formalize it in Online Appendix A.

Network The key idea in recovering the network is that changes in the choices made by the
peers of a given agent induce variation in her CCPs and that different types of peers induce

a different type of variation. To see this, note that P, can be rewritten as

Pu(v]y) = Qu (v | NCI (y)) x D, (v | NRY (v) . NC2\ ().
where the second term in the right-hand side is given by

Dy (v | NRY (v) NCY\) () = 37 Ra (0 NREV (v),€ U (o} ) Ca (€I NGV (3), 0\ {0}).

CEV\{v}

In words, the observed probability that v is picked equals the product of the probabilities that
it is considered and that it is picked when considered. Note that consideration-only peers who
select option v enter only the first term. In addition, consideration and/or preference peers
who select alternatives other than v affect only the second term. These two observations
allow us to use certain changes in In P, to identify the network.

Define A}, as a linear operator that indicates the increment of a function when the choice
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of Agent o’ in y changes to v. Formally, given f : Y4 — R, let A% f(y) = f(y%) — f(y),
where y?, denotes the vector in which the a/-th component of y is replaced by v.

We first identify the reference group of Agent a by using changes in her CCPs. Intuitively,
Agent @’ is in the reference group of Agent a if changing her choice in the choice configuration

affects the decision of Agent a. Specifically, the implied difference in In P, is given by
AL InP, (v]0) = ALInQ, (v | NCL(0)) + AL InD, (v| NRY (0), NG\ (0)), (1)

where the zero vector 0 denotes the configuration where everyone picks the default. Each term
in Equation (1) relates to one mechanism of peer effects: the first term reflects (if present)
the peer effect in consideration. The second term captures the peer effect in preferences.
When peer effects in consideration and preferences are of the same sign, then, under
Assumptions 1 - 3, A, InP, (v | 0) # 0 if and only if Agent «’ is in the reference group of
Agent a (i.e., a’ € N,). When the interaction effects are of different signs, the “if” part
requires a “regularity condition” that we discuss in detail in Online Appendix A. This extra
condition rules out the possibility that peer effects in consideration and preferences be of
opposite signs and of equal magnitude. We next state that under all our restrictions the

reference groups (even if they are empty) can be recovered from the CCPs.
Proposition 3.1. If Assumptions 1 - 3 hold, then N, is identified for each a € A.

Example 1 (continued). The probability that Agent 1 selects option 1 satisfies

Py (1]y)=mQ, (1|NC=1(yp=1)+1(ys=1))

+InDy (1] NR{™ = (1 (g5 =1),1(y5=2)) NCT =1 (12 =2) +1(y3=2)).
Take y = 0. The changes in In P; when we change the other agents choices from 0 to 1 are

AyInP;(1[0) =mQ, (1|NC}=1)—InQ, (1|NC} =0) #0,
AjInPy(1]0)=InQ, (1|NC} =1) —InQ, (1| NC} =0)

+InDy (1] NR{™ = (1,0),NC} =0) —InDy (1| NR{"™ = (0,0),NC} = 0) #0,
AjlnP;(1]0)=0.
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Proposition 3.1 identifies the peers of Agent 1 as those for which these changes differ from 0.
Following this idea, we correctly recover N7 = {2,3} . O

Next, we identify whether Agent o’ in N, affects Agent a’s preferences or consideration
only. Note that differences in InP, allow us to recover the reference groups, but these
differences are silent about the mechanism by which the interactions happen. To see why,
note that (for instance) a nonzero A?, In P, (v | 0) could be generated from the first summand
in Equation (1) via Q, and/or from the second summand via R,. But these two terms differ
in that the second summand varies with the number of peers that select alternatives that
are different from v, while the first term does not. Thus, the two mechanisms can be set
apart by a second shift in InP, (v | 0). Let a/,a” € N, and w € Y \ {0} with w # v. Since

A? is a linear operator, we can define a double difference as follows

Ag//AZ/ hl Pa (U ‘ O) = AZU// [ln Pa (/U | OZ/) - ln PCL ('U ‘ 0)] - AZ)// lnPa (U ’ 02/) - AZ}// ln Pa (/U | 0)

= [lnPa (U | (OZ’)w ) - 1nPa (U | OZ’)] - [lnpa (U | Og”) - lnPa (U | O)]

Specifically, we have that
A% AL P, (v ] 0) = ALAL InQ, (v | NC; (0)) + A% AL D, (v | NRY (0), N\ (0)) .

Note that A% A InQ, (v | NC? (0)) = 0 since Q, (v | -) does not depend on the number of
peers who picked w. Also, if @’ is a consideration-only peer (¢’ € NC, \ N'R,), then

A% D, (v] NRY (0),NC\ (0)) = 0.

Asaresult, A% AY, InP, (v | 0) = 0if Agent d’ is a consideration-only peer. A key observation
is that if Agent o’ affects Agent a’s preferences, then the second summand in Equation (1)
will not disappear after switching Agent a” from 0 to w. In summary, under Assumptions 2-3

and the regularity condition, o’ € N'R, if and only if

AY, AL InP, (v | 0) # 0 for some a” € N,.

19



Thus, by checking the double difference for each agent in the reference group of Agent a, we
can divide her reference group into consideration-only peers and preference peers (who may
or may not affect consideration). This identification strategy requires Y > 2 and |N,| > 2.

Note that we can also separate the preference peers in two sets by the magnitude of the

changes in CCPs. Specifically, for ' € NCR, and a” € NR, \ NC,, we have that
AYInP,(v]0)#AL InP,(v]0).

This allows us to separate the preference peers into two groups that we define as M’ and M".
Although we know that one of these sets is NCR, and the other is N'R, \ NC,, without

further restrictions, we cannot tell which is which. We address this issue in the end.

Proposition 3.2. Suppose Assumptions 1 - 3 hold. For any a € A, if Y > 2 and |N,| > 2,
then NC, \ N Ry and NR, = M UM” are identified. Also, NCR, € {M', M"}.

Example 1 (continued). Recall that we identified that A7 = {2,3}. We now want to know
what type of peers Agents 2 and 3 are. Next we display two double differences

AiAIInPy(1]0) =
AZALIn Py (1]0) = [le (1INRY = (1,0),NC? = 1) =Dy (1| NR{"™ = (0,0),NC} = 1)]

— [mDy (1| NR{M = (1,0),NCF = 0) — Dy (1| NR{M = (0,0),NC} = 0)] #0.

In the first line, we first change the choice of Agent 2 from 0 to 1. Since Agent 2 is
a consideration-only peer, this difference does not depend on the number of other peers
selecting options different from 1. Thus, when we further change the choice of Agent 3 from
0 to 2, the result is 0, and we conclude that Agent 2 is a consideration-only peer.

In the second line, we first change the choice of Agent 3 from 0 to 1. Since Agent 3 is a
consideration-preference peer of Agent 1, this difference depends on the choices made by
other peers selecting other alternatives. Thus, when we further change the choice of Agent 2

from 0 to 2, the result differs from 0, and we conclude that Agent 3 is a preference peer. [J

Finally, we identify the set of consideration-preference peers (i.e., NCR,) from the group

of peers that affect preferences. We discuss identification with and without consideration-only
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peers separately. By Assumption 4, if NCR, is nonempty, then there exists a peer that is
either a consideration-only or preference-only peer. Assume that we have already identified
two peers such that Agent a’ is a consideration-only peer (i.e., ' € NC, \ N'R,) and Agent
a” affects preferences (i.e., a” € N'R,). Note that

AL InP, (v]0)=A%ALInQ, (v] NC.(0)).

(Z”

This is so because, since Agent a’ only affects consideration, the second term in Equation (1)
is zero. Thus, if Assumption 2(iii) holds, a” € NCR, if and only if AY,AY InP, (v | 0) # 0.

Suppose next that there is no consideration-only peer. We can implement a similar idea
by replicating the consideration-only peer behavior with a consideration-preference peer and
a preference-only one. Note that these two peers can be identified by Proposition 3.2. Pick
some Agent a' € M’ and Agent a” € M"”. We have that

nP, (v] 0%) — P, (0] 0%) = (~ )" “ENRI(InQ, (v 1) I Q, (v ] 0).

That is, when we switch a consideration-preference peer from the default to alternative v,
InP, (v | 0) changes via two effects, namely, preference and consideration. Importantly, the
effect via preferences coincides with the one we get by switching a preference-only peer from
the default to alternative v. Thus, by subtracting the two effects, we can recover the effect
(up to sign) of switching a consideration-only peer from the default to option wv.

Finally, take another Agent a” from either M’ or M” and implement a double difference
to the previous expression by changing the alternative of Agent a”” from the default to v. As
before, we identify whether Agent a” is a consideration-preference or preference-only peer

by checking whether this double change is different from zero:'?

A, [InP, (v]0%) —InP, (0] 0%)] £ 0 <= a” € NCR..

This information allows us to know whether NCR, = M’ or NCR, = M".

The last proposition offers final conditions for all the parts of the network to be identified.

BThis procedure requires at least three peers in Nj.
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Proposition 3.3. Suppose Assumptions 1 - / hold. Suppose also that NC,\N R, is identified
(or known) and |N,| > 3 — |INC, \NR,|. Then, NC, and N'R, are identified.

Example 1 (continued). We learned earlier that Agent 2 is a consideration-only peer of Agent
1. We also learned that Agent 3 is either a preference-only peer or affects both preferences
and consideration of Agent 1. We next establish whether N'C; = {2} or NC; = {2,3}. Since

Agent 2 is a consideration-only peer, we have that
AynPy(1]0) =@, (1|NC}=1) —In@Q, (1| NC} =0).
Changing the alternative of Agent 3 from 0 to 1, we obtain that by Assumption 2(iii)

AJA}In Py (1]0) =[mQ, (1|NC}=2) —InQ, (1|NC} =1)]

—[mQ, (1INCI=1) = InQ, (1| NC} =0)] #0.

Thus, we identify that Agent 3 is also a consideration peer. That is, NC; = {2, 3}. d

To sum up, the reference group of Agent a is identified by checking the variation in In P,
as we switch other agents from the default alternative to a specific v. If, in doing so, we
identify that the agent has two or more peers, we can recover the consideration-only peers by
using the additive separability of InP, (v | y) in Q, (v | NCY (y)). Finally, if we identify at
least one consideration-only peer, we can use her as a baseline to identify all other types of
peers. Otherwise, we create such a peer by mixing the behavior of a consideration-preference
peer with the one of a preference-only peer and use the behavior of the constructed peer as a
baseline to complete the network identification. In this case, we need at least three peers.

We finally remark that while no restriction on the number of options is needed to recover
the reference group of a given agent, we assume Y > 2 to divide this set in consideration
and preference peers. We next use the initial example to see why this requirement is needed

and to state what can be done when it fails, i.e. Y = 1.

Example 1 (continued). Let us keep the network but assume ) = {0,1}. Then

Py (1]y)=lQ (1[1(y=1)+1(ys=1))+ImRy (11 (ys=1),{0,1}).
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In this set-up,

AYInPy(1]0)=nQ, (1] 1) —InQ, (1]0),
AP, (1]0)=10Q, (1]1) —InQ, (1] 0)+InRy (1]1,{0,1}) — InRy (1] 0,{0,1}),
AllnP, (1]0) = 0.

Thus, we can learn that N7 = {2,3}. But now, double differences will not allow us to state

whether each of these agents is a consideration and/or a preference peer. [l

The above example shows that our identification strategy fails to separate the type of
peers when Y = 1. In this case, there are other sets of assumptions that we could invoke
to restore identification. Among them, partial knowledge of the network structure and

knowledge of the sign of peer effects would allow identification, as we illustrate next.

Example 1 (continued). Recall that Y = 1. Suppose we have partial knowledge of the
network structure. In particular, suppose we know that N R; = {3}. Since we can still learn
that N7 = {2, 3}, we conclude that NC;\N'R; = {2}. Thus, to recover the complete network,
we only need to learn whether Agent 3 is a preference-only peer or a consideration-preference

peer of Agent 1. As before, the fact that

AZA Py (1]0) =[InQ, (1|NC} =2) —InQ, (1|NC] = 1)]

—[mQ, (1|NC}=1) =In@Q, (1| NC} = 0)] #0

allows us to conclude that Agent 3 is a consideration-preference peer.

When Y = 1 we can also recover the network structure under sign restrictions, which
we have not imposed so far. If we assume that peer effects in consideration and preferences
are of opposite signs, then we could dispense with the assumption that either NC, or N'R,
is known. This situation might apply to vaccines. Arguably, a person becomes aware of a
vaccine if more of her friends are getting shots. Also, if more friends get vaccinated, then
the chances of getting sick reduce, and this reduces the incentives to get the vaccine. Thus,

the peer effects in consideration and preferences are positive and negative, respectively.'* [

41n a different model, a similar idea has been used by Agranov et al. (2021) to explain some data on
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Consideration Mechanisms and Choice Rules We first state that if we know the
network structure, and each agent has at least one consideration-only peer —or such a
peer can be constructed from consideration-preference and preference-only peers, as we do
above— then we can recover ratios of consideration probabilities. To show this claim, let
a € NC,\ NR,. Since Agent a’ only affects consideration, we can shift Agent a’’s choice
from the default to v and recover some information about the peer effect in consideration.

Specifically, we have

AL InP,(v]|0)=InQ,(v|1)—InQ,(v|0).

Thus, we can identify Q, (v|1)/Q, (v |0). If NC, \ NR, is empty, but N'R, \ NC, is
not, we can use preference-only peers in a similar way. In particular, suppose @’ € NCR,
and a” € NR, \ NC,. Then, nP,(v|0%)—1InP,(v]0%) =InQ,(v]1) —InQ,(v]0).
By applying the same ideas to different initial configurations, we can identify ratios of

consideration probabilities as we formally state next.

Proposition 3.4. Let NC, and N'R, be known and Assumptions 1 - J hold. Then

Qu(v[n+1)/Q,(v|n)

is identified from P, for each n from 0 to |INC,|—1. (We use the convention that if [INC,| =0,
then the set “from 0 to -1”is empty.)

Remark 5. Proposition 3.4 is valid for a substantially more general consideration set model.
For example, the assumption that each alternative is added to the consideration sets
independently from other alternatives (Assumption 1) can be dropped. Indeed, by definition,
P.(v | y) = Q,(v | NCI(y))Pra(v | y,v is considered), where the second term is the
conditional probability that v is picked conditional on being considered. Thus, variation in
the choices made by o’ € NC, \ N'R, would identify Q, up to scale. Note, however, that in
this case, knowing Q, is not enough to identify C, since QQ, does not convey information

about the probability of several items being considered simultaneously.

COVID-19 vaccine uptake.
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We next show that we can also recover some counterfactual objects of interest. Adding

some restrictions, these counterfactuals will allow us to recover the choice rules. Define

Pi(0]y, Y\ 2) =3, Ra (vINRE (y).C) Ca (CINCYE(y), Y\ 2)

for each Z C Y\ {0}. That is, P} (v |y,Y \ 2) is the counterfactual probability of selecting
alternative v under choice configuration y when we restrict the set of available options or
the menu from ) to Y\ Z. It tells us what happens to the CCPs when we remove set Z
from the original menu. Note that, by definition, P} (v |y,Y) =P, (v | y).

To fix the ideas behind the next result, consider the setting with A = {a,a’}, Y = {0, v, v},
NR, =0, and NC, = {a'}. Take y such that y, = 0 (y, can be arbitrary). Recall that y?

denotes a configuration where the a’-th component of y is replaced by v’. Since

Pow ]y, Y\ {v'}) = Q, (v | 0)Ra (v [ 0,{0,0}),

we have that

Po(v]y) =Q, (v 10)Q, (v | 0)Ra (v ](0,0),{0,v,0'}) + |1 = Q, (v [ 0) | Pa(v |y, Y\ {v'}).

This is the observed probability of Agent a choosing option v given that her peer a’ previously

chose the default. Moreover, by switching a’s choice from the default to v/, we have

Py (v]y2) =Qu (' [ 1) Qqu (] 0)Ra (v ] (0,0),{0,v,0'}) + (1= Q, (' | 1) P (v | y, ¥\ {v'}).

Note that we used the fact that since Agent a’ only affects Agent a’s consideration proba-
bility, but not the preference, the variation of Agent a’’s choice in the choice configuration
provides variation in the consideration probability but not in the choice rule. That is,
R, (v ](0,0),{0,v,2'}) does not vary when &’ switches from the default to a different alter-
native. Moreover, we also used the fact that P*(v |y, Y\ {v'}) = PX(v | y%, Y\ {¢'}), which
follows from v" being excluded from the menu and, thus, switching to it does not change the

probability of picking v.
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Solving this system of two equations with respect to P} (v |y, Y \ {v'}), we obtain that

P, (v | yZ:) —ty Py (v]y)
1 —ty ’

Po(v |y, Y\{v'}) =

where t,, = Q, (v' | 1) / Q, (v" | 0) # 1 can be identified using Proposition 3.4. It follows that
we can recover the counterfactual CCP P} (v | y, Y\ {v'}) for any y for which the alternative
corresponding to one of the consideration-only peers is equal to 0 (i.e., y, = 0). Essentially,
we just used a consideration-only peer to exclude one alternative from the menu. Applying
the same argument to these new counterfactual CCPs, we can exclude two alternatives as
long as we have two consideration-only peers. Again, we can use any initial y as long as the
components that correspond to any two consideration-only peers are set to 0. That is, we
can exclude any set of nondefault alternatives if its cardinality is smaller than |NC, \ N'R.,|.

The next result formalizes and extends this argument.

Proposition 3.5. Suppose NC, and N'R, are known, and Assumptions 1 - 3 are sat-
isfied. Then P, (v |y, Y\ Z) is identified from P, for every Z C Y \ {0} such that
|1Z| < INC,\NR,| and each y for which at least |Z| of its components corresponding
to any peers in NCo, \ N'R, are 0.

Proposition 3.5 addresses an important counterfactual prediction: What would happen
if some alternatives were removed or become unavailable? Note the identification of these
counterfactual CCPs does not require knowledge of either Q, or R,. We only use ratios of Q,s.
It follows from these ideas that (in our setting) variation in the choices of consideration-only
peers is equivalent to menu variation in the stochastic choice literature (Aguiar et al., 2023).
In particular, if one has enough consideration-only peers, we can identify the counterfactual
CCPs for binary menus P} (v |y, {0,v}) = Q, (v | NC, (y)) Ra (v | NR, (y),{0,v}). Hence,
if either Q, (v | NC? (y)) or R, (v | NRY (y),{0,v}) is known, we can recover Q, (v | -) (by
Proposition 3.4) and then R, (v | NRY (y),{0,v}) from our recent ideas. Applying the same

argument to menus of size three, we can identify R, for sets of size three, and so on.

Proposition 3.6. Suppose the assumptions of Proposition 3.5 are satisfied. If, in addition,

we have that INC, \ NR,| > Y —1 and, for each v # 0, either Q, (v | n1) or Ry (v | na, {0,v})
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is known for some ny and ng in the support, then Q, and R, are identified from P,.

The assumption that either Q, (v | ny) or R, (v | n2,{0,v}) is known for some n; and
ng in the support can be satisfied in different settings. For example, it is satisfied if the
default is never picked when it is part of a binary menu with some alternative v and when
all preference peers pick v (i.e., Ry (v | [NRq|,{0,v}) = 1). This may happen when one
decides whether to use a particular social media with the default choice being not to use any.
It would be reasonable to think that if all the friends of a given person are using this social
media, then the person will use it for sure. Another example when the assumption is satisfied
is when the alternative is considered with probability 1 if enough (or all) consideration peers
pick the alternative (i.e., Q, (v | |[NC,|) = 1). In the case of online games, this is the same

as to say that a player considers for sure a game when all her peers have just played it.

3.2. ldentification of P

This section studies identification of the CCPs, P, and the rates of the Poisson alarm clocks
from two different datasets. In Dataset 1, the researcher observes the precise moment at
which an agent revises her strategy and the configuration of choices at that time. In Dataset
2, the researcher observes the configuration of choices at fixed time intervals.

Assume the researcher observes agents’ choices at time intervals of length A and can
consistently estimate Pr (y'”rA =y |y = y) for each pair y',y € Y4. We capture these
transition probabilities by a matrix P (A).'> Let ") be the matrix exponential of AW.
Then P (A) relates to transition rate matrix ¥ in Section 2.3 by P (A) = (&),

The two datasets we consider differ regarding A: In Dataset 1, the time interval is very
small, i.e., the researcher knows lima_,0 P (A). This ideal dataset registers agents’ choices
at the exact time at which any given agent revises her choice. With the proliferation of
online platforms and scanners, this kind of data is often available. In Dataset 2, the time
interval is of arbitrary size, i.e., the researcher knows P (A). In both cases, the identification

question is whether (or under what extra restrictions) we can recover W from the transition

5Here again, we assume that the choice configurations are ordered according to the lexicographic order
when we construct P (A).
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probabilities in P (A) which are identified and estimated from the data directly.

Proposition 3.7 (Dataset 1). If Assumptions 1, 2(i), and 3(i) hold, then the CCPs P and

the rates of the Poisson alarm clocks (Ay)aca are identified from Dataset 1.

The proof of Proposition 3.7 follows because when the time interval between the observa-
tions goes to zero, we can recover YW. At least two known cases produce the same result
without assuming A — 0. One of them requires the length of the interval A to be below a
threshold A. The issue of this approach is that the value of the threshold depends on details
of the model that are unknown to the researcher. The second case requires the researcher
to observe the dynamic system at two different intervals A; and A, that are not multiples
of each other (see, for example, Blevins, 2017 and the literature therein). The following
proposition, based on Theorem 1 in Blevins (2026), offers a third case in which the transition

rate matrix can be identified from Dataset 2.

Proposition 3.8 (Dataset 2). If Assumptions 1, 2(i), and 3(i) hold, and W has distinct
eigenvalues that do not differ by an integer multiple of 2wi/A, where i denotes the imaginary

unit, then P and (A\y)aca are generically identified from Dataset 2.

The restriction on eigenvalues of W is a regularity condition that is generically satisfied.'®
The key element in proving Proposition 3.8 is that the transition rate matrix in our model
is rather parsimonious since, at any given time, only one agent revises her selection with a

nonzero probability. Thus, the transition rate matrix ¥V has many zeros in known locations.

4. Extensions

4.1. History Dependence and Own Past Choices

We have assumed that the choices made by a given agent are only affected by the current
aggregate choices made by her peers and ignore her own past choices. We next extend the

model by allowing that both the consideration and preferences of a given agent depend

16See Blevins (2017) for a discussion of this assumption.
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on the history of her own choices and those of her peers. As consideration probabilities
can be 1, the dependence on past choices allows nontrivial dynamics in consideration sets.
For instance, they may not change much over long periods. Thus, this extension allows
us to accommodate, among others, persistence in consideration sets and choices —see the
discussion after Assumption 2 in Section 2. We use these ideas in our empirical application.

There are many ways in which history can be embedded into the model. We propose here
a possibility that allows us to model an interesting situation (described below) and requires
minimal extra notation. Let {¢,};> be an (increasing) sequence of random time periods in
which the clocks of different agents went off. Let y;, denote the configuration of choices in
the network at k-th time period (at this moment the alarm clock of some agent went off).
As a result, we can encode the whole history of choice configurations before moment ¢ as
he = (y1, )t,<t- Next, assume that the choice rules and consideration probabilities depend
not only on choices made by peers at the moment at which the choice is revised but also

on the whole history of choices h;. Hence, given the history of choice configurations h;, the

probability that alternative v is picked by Agent a at time ¢ would be

P, (U | Y, ht) :chy Rq (U | Yt7htaNRaaC)

HU’EC Qa (/U/ ’ Yi, htaNCa) Hv'ey\c (1 - Qa (/U/ ’ Y, htaNCa)) .

None of our previous results use variation beyond the choices made by connected agents at
the moment of making a decision. Hence, if we condition on the choice made by Agent a,
Yat, and the history h; of choices, then we can establish the identification of all parts of the

model from P, using our previous ideas —thus, we omit the proof of the next result.

Proposition 4.1. Suppose Assumptions 1 - 4 are satisfied conditional on yq, and the history
hy for all possible yqr and hy. Also, let us extend the definition of P, to allow for dependence

on Yu and hy. Then, all propositions from Section 3.1 are still valid.

Proposition 4.1 takes as an input the CCPs that (now) depend on the histories of choices
made by everyone in the network, i.e., it is implicitly assumed that P, is identified. Since we

only observe choices made by agents from one network, it would be impossible to identify
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the CCPs conditional on all histories without further assumptions. To address this difficulty,
we could restrict the length of the history that affects P,.!” This can be done by assuming
that there exists finite K > 1 such that QQ, and R, depend only on the first K components

77777

P, (U | ¥t (Ytk/)k’:l,...,k—1> =P, (U | Yeus (Vey o=k, k—l) :

Hence, P can be recovered from Dataset 1.8

To motivate the details of this extension let us go back to the example of the online
platform that offers video games to a set of players. As we mentioned in the introduction,
these platforms often allow agents to form social networks and make the last purchased or
played by peers game visible to the agent. Based on the history of acquired games, the
platforms could also share with their subscribers the last few games that were acquired, and
the identity of the players that acquired them. One could argue that recently acquired games
could receive further attention by the subscribers of the platform. Recent games played by a

subscriber could also have a special effect on her consideration set.

Example 1 (continued). Let a*(t;_1) be the agent that made a choice at the #;_; moment.

Hence, ya+ (1, 1), is the choice that Agent a*(ty—1) made. Assume that consideration of an

k
alternative (in addition to the previous arguments) depends on whether that alternative is
the most recent choice made by a consideration peer and the alternative of the agent in the

current choice configuration. That is,

Qu (v | Yty b NCa) = Qu (0] Y, NCU(ye ), T (Yar (e = 0 ) 1 (" (tx1) € NCa ).

Thus, histories of length K = 1 affect the CCPs. For y,, = (1,1,2,0) and y,, , = (1,0,2,0),
we have that a*(t,—1) = 2 and ye+, )+ = 1. Thus, the consideration probabilities of Agent

17CCPs could also be identified even if they depend on the whole choice history if one requires the impact
of the remote past to decay sufficiently fast with time (see, Hérdle et al., 1997, Bierens, 1996, and Truquet,
2023 for examples).

18 Alternatively, one can also restrict the history in terms of the length of the time period rather than
the number of actions. We could assume that there exists £ > 0 such that P, (U | Yirs (Ve )h=1

P, (U | Yitrs (Ytk/){k’ k' <k, tk—tk/<f}) .
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lare Q;(1|1,1,1) and Q, (20, 1,0) since option 1 (and not 2) was chosen at tj_. O

4.2. Nonobservable Default

In many settings, the decision to choose the default alternative is often not observed. For
example, if the default is “do nothing,” then at any point in time that there is no change
in the behavior of a given agent, we do not know whether she woke up and decided to do
nothing or she did not have an opportunity to make a new decision. When this happens,
even in continuous-time data setting (Dataset 1), there is no hope to separately identify A,
and P,. Therefore, some form of normalization is required. In our empirical application,
we find it convenient to assume that A\, = 1. This implies that, on average, agents have an
opportunity to make a choice once per unit of time. Once A, is normalized, we can identify
the CCPs P, from the data directly, with which we can follow the identification results for

network structure, consideration probabilities, and choice rules.

5. Application

We investigate peer effects in consideration and payoffs on the expansion decisions of the two
dominant tea chains in the high-end tea industry in China. We have three goals: First, we
showcase our identification strategy and provide a practical estimation procedure. Second,
we show that ignoring the presence of limited consideration might mislead our estimates of
profitability of different markets. Third, we quantify the direct effect of limited consideration
and peer effect in consideration on the dynamics of market structure.

The tea beverage industry in China has seen a rapid expansion with its overall revenue
increasing from 42.2 to 83.1 billion yuan from 2017 to 2020. This industry is divided into
three segments: high-end, middle, and low-end. We study the two leading tea firms in the
high-end segment —Heytea and Nayuki— which did not accept franchising before 2022. We
acquired city-level store registration data from a commercial provider that sources records

from the National Enterprise Credit Information Publicity System (CnOpenData, 2021).
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This dataset allows us to determine when the enterprise enters and exits the market, enabling
us to construct the cumulative number of stores in each city. We supplement the registration
data with regional information from the China City Statistical Yearbook (National Bureau of
Statistics of China, 2016-2021)." To avoid any changes in demand caused by the COVID-19
pandemic, we restrict our sample until the end of 2020. By then, Nayuki had 485 stores in
57 cities, while Heytea had 729 stores in 46 cities.

5.1. Empirical Model

We first describe the model of firm expansion decisions and then introduce the specifications
for consideration and payoffs. We define a market at the level of a prefecture-level city,
which ranks below a province and above a county in China’s administrative structure. Thus

markets are geographically isolated from each other. We collect all unknown primitives by 6.

Choice Set, Agents, and Peers There are finite sets of firms, F, and markets to expand
to, M. Every firm f decides whether to open a store (v = 1) in market m or not (v = 0).
We call a pair a = (f,m) € F x M an agent —knowing the firm and the market identifies
the agent and vise versa. Thus, A =F x M and Y = {0,1}.?° The set of markets in which
these firms can open a new store is quite large, and the data correspond to a time when
these firms were relatively new in the industry. We argue that managers might circumscribe
the set of markets they consider at a given time to facilitate the decision process. At the
moment of deciding whether to open a store, the attention that firm f pays to market m
depends on its own and competitor’s past choices in market m; it also depends on past
openings at “neighboring” markets. Formally, NC, and N'R, are the sets of pairs of firms
and markets that affect consideration and payoffs, respectively, of firm f in market m.

As we just described, each firm decides whether to open a new store in each market.
At the end of the analysis of network identification in Section 3.1, we modified Example

1 to show that with only one non-default option we cannot rely on double differences to

0nline Appendix C.1 offers more details on the dataset we use.

20We abuse notation a bit since A was previously defined as a set of the form {1,2,..., A}. To be consistent
with the initial notation, we can take any one-to-one mapping a : F x M — {1,2,...,|F x M|} and define
an agent as a = a(f, m).
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recover all parts of the network structure, and thereby need to assume partial knowledge
of it. We follow the literature (e.g., Arcidiacono et al., 2016) and assume the marginal
profit of firm f in market m from opening a new store is only affected by both its own
and its competitors’ openings in market m. Formally, (f',m') € N'R(s ) if and only if
m = m’. After constructing N'R, in this way, we estimate the consideration network from
the data. A potential concern with this assumption is the possibility of spillover effects across
markets on profits. For example, the profits in different markets may be correlated through
shipping cost savings from the distribution chain (see, for instance, Jia, 2008, Holmes, 2011,
Zheng, 2016, Houde et al., 2023). We believe this is unlikely in our application as Nayuki
relies on third-party logistics for shipping instead of building its own distribution centers.
Moreover, its financial report states that storage and shipping accounted for approximately
only 1.9 percent of total revenues in 2020.2'?? Another potential source of spillover effects is
information aggregation: the more stores a firm has in the area, the more information it has
about the profitability of a particular market. In Online Appendix C.3, we re-estimate the
model allowing the number of own stores in the nearby markets to affect firm’s profitability
in the focal market —keeping the assumption that rival’s stores in the nearby markets only

affect consideration. We show the main results are robust to these potential spillover effects.

Observable Characteristics Every market m at every moment of time ¢ is characterized
by observed market characteristics Sp,; (e.g., GDP and population density) that include a
constant. Let N, denote the number of stores of Agent a (i.e., the number of stores of firm

f in market m). Also define S; = (Spi)mem and Ny = (Nap)ae A=Fx M-

Market Consideration In our application, there are 71 markets where at least one firm
opened a store by the end of the measurement. As we already justified, we allow firms to
consider only a subset of markets when making a decision. Given the numbers of stores each

firm had in the market at time ¢, V;, the probability that firm f considers opening a new

2lhttp://www.cn156.com/cms/scm/105854 . html, Assessed August 2025.
22We had not found any reliable sources for Heytea. But, being similar in other respects, we suspect the
same argument applies to Heytea.
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store in market m at time t is
Qa(l | Nta St7NCa) - Fé (%at(stv Nt7 ‘9)) )

where F: is a known c.d.f.; 6 is the vector of unknown parameters; and 74 (S, Ny; 0) is the
mean attention index, which is known up to #. We allow the current market features of
market m (including the market characteristics and all firms’ number of stores) to affect
the attention index of Agent a. Moreover, we allow the market structure of Agent a’s

neighborhood markets to affect her attention to market m.

Payoff from a New Store Conditional on a market being considered, the firm decides
whether to open at least one new store in that market based on its marginal profit 7. This
marginal profit captures not just the instantaneous (one period) profitability of an extra
store, but the expected profitability of the store in the long run.?® The probability of opening

a new store in market m by firm f at time ¢ conditional on it being considered is
Ra(l | Nta St7NRa7 {07 1}) = FE (ﬁat<st7 Nt7 9)) )

where F is a known c.d.f. and 74 (S;, IVy; 0) is the mean marginal profit —known up to 6.

Model Implied CCP Altogether, the probability that firm f opens a new store in market
m (with a = (f,m)) is

Pro(1| Ne, $:0) = Fe (Far(Se Nis 0)) Fe (7ar (S, Nis )

which completely characterizes the probability of observing a new store in a given market by

a given firm conditional on the history and the market characteristics. When evaluated at the

true parameter value 6y, Pr, matches the CCP P, i.e., P,(1 | Ny, Si) = Pro(1 | Ny, Si;6)-
The vector of parameters 6 contains the parameters entering 7,; and 7, that relate

to both the covariates and the consideration network structure NC,, a € A. Note that

23We do not explicitly model forward-looking behavior to focus on the peer effect in limited consideration
on firms’ decisions. Incorporating forward-looking behavior can be computationally intensive and requires
additional assumptions about players’ expectations and beliefs, which is beyond the scope of this paper.
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NR,={(f',m') : f'# f,m=m'} is assumed to be known and, thus, is not a part of 6.

5.2. Estimation

Data The data we have consist of three objects: (i) the exact date of store openings {t;} ;

(ii) the state of the market structure { Ny, }acak=1,. x sampled from a continuous time over

interval [0, x|, where Ny, is the number of stores owned by firm f in market m immediately
prior to k-th change at time ¢, —the last date of measurements coincides with the last day in

which any action was observed; and (iii) observable market characteristics {Sy, ¢, }acar=1

-----

Likelihood Function Our identification argument is constructive and can be used to
estimate the model nonparametrically. However, for small and moderate-sized samples, we
suggest using the parametric maximum likelihood estimator of CCPs P, as it is reasonably
flexible in allowing market-specific consideration network links and efficiently uses all varia-
tions across markets (see Online Appendix B for details on the nonparametric estimator).
We also add the network links in the parametrization of CCPs to estimate the CCPs, these
network links, and the other consideration and payoff parameters in one step —instead of
first estimating the CCPs and then applying our identification argument to estimate the rest
of the model. In particular, we construct from the data a state vector 1y, = (74z, )ac.a, Where
Ta, indicates whether there is a change in the number of stores of firm f in market m at

time g, i.e., 74, = 1 (Na > Nat, ) . The probability of observing 7, given the data and

te+1

model parameters # conditional on an alarm clock going off, is

p(rtwstk?Ntk;e) = H Pra(l | Nt,St;H) X H |:1 — Pra(l | Nt,St;Q) .

a:ra,tkzl A:Taty =0

Hence, the probability that no new stores are opened in any market by any firm, given market

characteristics and number of stores already opened (probability of picking the default), is

po(Sis Nos8) = T1 [1 — Pro(1 | N, Sur: ).
acA

Finally, given that the arrival process is exponential, the log-likelihood of observing the
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data given 6 and normalizing A, = 1 (the choice of “doing nothing” is not observed; see

Section 4.2 for details on this normalization) is

—(tht1 — te) A1 — po(Sis N3 0)) + In(Ap(re,, Sty Niys 6)).

||MN

The maximum likelihood estimator of @, é, is defined as the maximizer of L over a parameter

space ©.%* The estimator 0 leads to an estimator of CCPs
Po(1] Ny, Sy) = Pro(1] Ny, Si; ).

The construction of confidence sets for the parameters and estimated CCPs would require
taking into account the estimation error in the estimated network. We leave this difficult
problem for future research. An important feature stemming from Assumptions 1, 2(i),
and 3(i), as shown by Proposition 2.1, is that our model has a single equilibrium or invariant
distribution, i.e., the multiplicity of equilibria in the data-generating process is not an issue

in our estimation.

Parameterization We assume that F: and F. are Logistic c.d.f. Given that our sample size
is small relative to the number of agents —there are 598 different dates in which we observed
firms opening a store?” for 71 x 2 agents— we use the following second-degree polynomial

parameterization to flexibly approximate mean marginal profits and mean attention index:*°

Tat(St, Ni; 0) =SB + Z { myects g+ N s, f’}

Tat(St, Ni3 0) =S, By + Z { mye0if, g+ Ny s, f’}L

2
+ Z gﬁf’ Z 6m,m”Na”t + ’F]ﬁf’ ( Z 5m,m” Na”t)
Iz

all:fr=f" al:f!'=f

24Checking all possible network structures is not feasible in our application. We use a variation of a greedy
algorithm. See Online Appendix C.2 for further details.

25For some days, we observe multiple agents opening a store. As we mentioned earlier, the identification
results in Section 3.1 are still valid if agents have perfectly synchronized clocks.

26We have estimated the model under several alternative specifications. The results are qualitatively the
same and are available upon request.
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The parameter d,,,,,» € {0,1} captures the consideration network structure. It is equal to
1 if stores in market m” affect consideration in market m and it is 0 otherwise. Note that
estimation of the consideration network and probabilities crucially relies on variation of the
number of openings by the two firms in nearby markets. For example, Sm’mu = 1 if allowing
the variation of openings in market m” to affect the CCPs of market m increases the value of
the likelihood function. That is, as in our identification strategy, the estimates add market
m” to the consideration network of market m if changing the number of stores in market m”
affects firms’ CCPs in market m. Therefore, it is the variation in openings that allows us to
pin down the values of the parameters that define the different parts of the model in the
maximum likelihood estimation.

The mean marginal profit has two parts: the first one captures the impact of the
observable market characteristics, and the second part captures the impact of the number of
stores all firms have in market m.?” The mean attention has an additional part capturing
the peer effect in consideration from markets different from m, i.e., we allow firm-specific
peer effects.?

The parameterization we use imposes two restrictions that are not needed for identification
but reduce the computational burden: First, the payoff and consideration parameters are
firm-specific and do not change across markets. Second, the consideration network link

parameters d,, ,» (that capture NC,) vary across markets but not across firms.

Remark 6. Since we use the total number of stores opened by each firm in every market as
the determinant of consideration and expansion probabilities, formally we have a model with
infinite history dependence. This, however, does not constitute any issues in our application,

since the mean attention and mean marginal profits take known parametric forms.

2"The fully structural model of marginal profits should contain information on fixed and marginal costs
and prices among many other things. We specify the marginal profit function in the reduced form because
of the availability of the data and to simplify the analysis.

28We use a second-degree polynomial in our approximation to capture potential nonmonotonicities. For
instance, in markets with few stores, firms may act as complements, while, in more mature markets, firms
may become substitutes. This would result in marginal profits that are not monotonic in competitors’ stores.
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5.3. Estimation Results

Network Structure The estimated consideration network has 266 directed links (i.e., the
adjacency matrix is not symmetric and has 266 nonzero elements). The initial network we
used in optimization uses spatial information about markets (see Online Appendix C.2) and

allows up to 563 links, so we use the likelihood value to close down almost 300.

Consideration We calculated the consideration probabilities for every market and each
firm using the numbers of stores and covariate values observed at the beginning (i.e., when
Heytea started operating) and at the end of the measurements. Figure 1 shows the fraction
of markets as a function of consideration probabilities for Heytea and Nayuki, respectively.
Both firms display substantial limited consideration at the beginning: the averages (standard
deviations) across markets of the consideration probabilities are 0.005 (0.006) and 0.029 (0.03)
for Heytea and Nayuki, respectively. By the end of 2020, as a consequence of increases in
the number of stores that the firms have in different markets, the consideration probabilities
became substantially larger, with Nayuki becoming an almost full consideration firm: the
averages (standard deviations) across markets of the consideration probabilities are 0.027
(0.04) and 0.82 (0.38) for Heytea and Nayuki, respectively.”” We next show that incorporating
limited attention is important for obtaining accurate estimates of profitability of markets

and that it affects market structure —which impacts consumer welfare.

Marginal Profits Estimates We analyze the probabilities of opening a new store across
markets (conditional on being considered). To quantify the effect of adding limited con-
sideration to the expansion decision, we also estimated the marginal profit parameters
assuming that all markets are considered. We refer to the former as limited consideration
estimates and to the latter as full consideration estimates. The results of the estimation are
presented in Figure 2. The difference between the limited and full consideration expansion

probabilities is striking. In the beginning, the full consideration model would substantially

29As anecdotal evidence for our findings, the news reported that Nayuki implemented a nationwide city
expansion plan. Beginning in late 2017, expansion moved beyond the province of Guangdong, rapidly
extending into South China, Central China, East China, and other regions (https://news.qq.com/rain/
a/20230109A03F0E007utm. com, Accessed August 2025). In contrast, Heytea announced in 2020 its plan to
continue focusing primarily on first-tier and provincial capital cities in China (https://news.sina.cn/gn/
2020-07-14/detail-iivhvpwx5274609.d.html, Accessed August 2025).
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Figure 1 — Normalized histogram of consideration probabilities for both firms at
the data’s beginning and end.

underestimate the expansion probabilities (all points are below the 45°-line). By the end of
2020, while the discrepancy almost disappeared for Nayuki, which is not surprising given
that it became an almost full consideration firm, the expansion probabilities for Heytea
are still heavily underestimated. Thus, ignoring limited consideration leads to completely
misleading estimates about the profitability of different markets. Qualitatively, this difference
is explained by the fact that the full consideration model attributes “not-opening” a new

store to negative marginal profits instead of limited consideration.

5.4. Counterfactuals

We evaluate the effect of limited consideration on market structure by comparing the fraction
of monopolistic, duopolistic, and markets that are not served across time between our limited
consideration model and a situation in which firms were fully attentive, i.e., the firms consider
all 71 markets but marginal profit functions are kept the same as in our model estimates.
The simulation starts with zero stores and then creates expansion decisions for about
500 days. Figure 3 depicts the fraction of monopolistic, duopolistic, and markets not served

by any firm as a function of time in the estimated limited consideration setting and the one
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Figure 2 — Limited consideration vs. full consideration expansion probabilities.

that imposes full consideration. Limited consideration has a large effect on the dynamics of
market structure. With full consideration, almost all markets would be served rather faster.
For instance, in less than a year both firms would be present in about half of the markets.
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Figure 3 — Counterfactual Scenario 1. Fraction of monopolistic, duopolistic, and
markets that are not served over time.

In the second counterfactual, we remove connections across markets in consideration.
Specifically, we shut down the effect of own and opponent stores in the neighboring markets

on consideration.”” The market penetration is not affected much. As part (b) of Figure 4

30We abstract away from any potential dependence between the network formation and the expansion
decision processes and assume that the network is an exogenously given fixed parameter. This assumption is
important for any form of counterfactual analyses that involves changes in the network structure.
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shows peer-effects on consideration from the neighboring markets speed up competition.
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Figure 4 — Counterfactual Scenario 2. Fraction of monopolistic, duopolistic, or
markets that are not served over time.

6. Conclusion

This paper offers a model of interactions in which different types of peers affect the choices
of a given agent via different mechanisms. We show that these peer effect mechanisms
have different behavioral implications in the data. This allows us to recover the set of
connections between the agents and the type of interactions between them. The choices
of different types of peers act as dual exclusion restrictions and allow us to recover the
consideration probabilities and the random preferences. We apply the model to data on tea
chains expansions in China. The empirical application adds to the literature on boundedly
rational firms. While studying a rather general model, we leave a few interesting variants for
future research, such as forward-looking behavior or the possibility that each agent ends up
making decisions with the purpose of affecting the consideration set of others. We believe

this set up could lead to a new model of endogenous social norms.
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7. Data Availability

The data sets and replication codes underlying this article are available in Zenodo, at
https://doi.org/10.5281/zenodo.18155977.
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